Secondary structure and oligomerization of the E. coli glycerol facilitator.

نویسندگان

  • D M Manley
  • M E McComb
  • H Perreault
  • L J Donald
  • H W Duckworth
  • J D O'Neil
چکیده

The Major Intrinsic Proteins are found throughout the bacterial, plant, and animal kingdoms and are responsible for the rapid transport of water and other small, polar solutes across membranes. The superfamily includes the aquaporins, the aquaglyceroporins, and the glycerol facilitators. We have overexpressed and purified the Escherichia coli inner membrane glycerol facilitator. Approximately 7.5 mg of 95% pure protein is obtained from 1 L of Escherichia coli cells using immobilized metal affinity chromatography. Well-resolved matrix-assisted laser desorption ionization mass spectra were obtained by solubilization of the protein in octyl-beta-D-glucopyranoside (M(r) = 33 650.3; error approximately 0.4%). The recombinant glycerol facilitator is inserted into the bacterial inner membrane, is functional, and is inhibited by HgCl(2). Polyacrylamide gel electrophoresis suggests that the facilitator is predominantly monomeric when solubilized with dodecyl-beta-D-maltoside, octyl-beta-D-glucopyranoside, and sodium dodecyl sulfate, but that it self-associates, forming soluble oligomers when urea is used during extraction. Similar oligomeric species are demonstrated to exist in the bacterial membrane by chemical cross-linking experiments. Circular dichroism analysis shows that the protein is predominantly alpha-helical. Helix content is significantly higher in protein prepared in the absence of urea (42-55%) than in its presence (32%). A possible role for the facilitator oligomers in interactions with, and regulation of, the glycerol kinase is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.

The major facilitator superfamily represents the largest group of secondary active membrane transporters in the cell. The 3.3A resolution structure of a member of this protein superfamily, the glycerol-3-phosphate transporter from the Escherichia coli inner membrane, reveals two domains connected by a long central loop. These N- and C-terminal domains, each containing a six-helix bundle, are re...

متن کامل

Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator.

Glycerol transport is commonly cited as the only example of facilitated diffusion across the Escherichia coli cytoplasmic membrane. Two proteins, the glycerol facilitator and glycerol kinase, are involved in the entry of external glycerol into cellular metabolism. The glycerol facilitator is thought to act as a carrier or to form a selective pore in the cytoplasmic membrane, whereas the kinase ...

متن کامل

Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli.

Wild-type Escherichia coli possesses an inducible permeation system which catalyzes facilitated diffusion of glycerol into the cell. A spectrophotometric method can be used to assess the presence of this mechanism. The structural gene for the facilitator (glpF) and the structural gene for glycerol kinase (glpK) apparently belong to a single operon. The glpF(+) allele permits effective glycerol ...

متن کامل

Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.

The major facilitator superfamily represents the largest group of secondary active membrane transporters in prokaryotic and eukaryotic cells. They transport a vast variety of substrates, presumably via similar mechanisms, yet the details of these mechanisms remain unclear. Here we report the 3.3 A resolution structure of a member of this superfamily--GlpT, the glycerol-3-phosphate transporter f...

متن کامل

The mechanism of glycerol conduction in aquaglyceroporins.

BACKGROUND The E. coli glycerol facilitator, GlpF, selectively conducts glycerol and water, excluding ions and charged solutes. The detailed mechanism of the glycerol conduction and its relationship to the characteristic secondary structure of aquaporins and to the NPA motifs in the center of the channel are unknown. RESULTS Molecular dynamics simulations of GlpF reveal spontaneous glycerol a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 39 40  شماره 

صفحات  -

تاریخ انتشار 2000